2020年10月19日

ディスプレイ

ディスプレイの調子が悪くなっています。
NECディスプレイs.jpg
2019年4月に購入したディスプレイですが、画面の周囲が白く表示されます。
このディスプレイはE社の同等品よりもちょっとだけ安かったので選択しましたが、1年くらい経過してから周囲の白い部分が拡大中です。
このディスプレイは、どちらかといえば業務用のようです。
ディスプレイとしては安いものではありませんのでこのような現象が出るのは意外でした。
NECディスプレイl.jpg
メーカのモニタのサポートに連絡したら、法人ではなく個人使用なので、個人向けのサポートに振られます。
そちらのサポートは、メイルでのやりとりはできず、電話をかける必要があります。
チャットサポートもあるのですが、AIというものに質問しても条件に合う回答はありません。
携帯電話の場合、機械音声にて、この回線は有料で繋がりにくい旨の話の後に内容の選択肢の案内があるのですが、途中で別の機械音声に切り替わり、電話が切断されました。数回試みましたが、同じでした。
固定電話でフリーダイヤルにかけたところ、途中で切られることはありませんでした。
内容により数字を押すように指示があるのですが、ディスプレイの修理に関する選択肢はなく、電話を切りました。
モニター・インフォメーションセンターの方にその旨をメイルで伝えたら、「内部調査のうえコンタクトセンターから連絡させるように対応を試みます。」旨の回答があってから、6日を経過しましたが何も進展はありません。
posted by よしひろ at 20:37| Comment(0) | TrackBack(0) | その他

2020年09月28日

エアブラシ

エアブラシは何個か持っているのですが、私好みへのちょっとした改造です。
airbrush4.jpg
数年前に購入した平吹き用のエアブラシは、塗料カップが上に付くものです。
これを塗料吸い上げ式にしてみました。
airbrush1.jpg
エアテックス製のサイドカップ アタッチメントセットというものを購入してみました。
無論、違う会社の製品なので互換性はありません。
持っているエアブラシのカップのねじはM8.0 ピッチ0.75位
購入したサイドカップのねじはM9.0 P0.75位です。
そこで、サイドカップのねじをM8.0 P0.75に改造しました。
 airbrush2.jpg
 一応、ねじはエアブラシに合うようになったのですが、金具の長さが合いません。
そこで、延長金具を作製し、取り付けました。
 airbrush3.jpg
これで、一応目的は達成されました。
試しに、シンナーを入れて吹いてみましたが、問題は無さそうでした。
エアブラシは重力落下式が多いような気がするのですが、吸い上げ式は人気がないのでしょうかね。
posted by よしひろ at 21:45| Comment(0) | TrackBack(0) | 工具

2020年08月27日

C53運轉室雨樋

C53運轉室雨樋を製作しています。
実物が板を曲げたものなので、それに準じて洋白の薄板を曲げて作製しています。
運轉室雨樋.jpg治具を使用して「し」の字状に曲げただけなのですが、成功率が1/3以下と非常に歩留まりが悪くなってしまいました。
治具に小さな傷があっても、それが曲げた物に反映されて少し歪になってしまいます。
曲げる板も両端の寸法差が0.05mmもあると、綺麗に曲がりません。
一旦曲げてある程度形を作った後にもう一度曲げているのですが、治具との合わせが少しでもずれると思った形にはなりませんでした。
たいした部品でもないのですが、結構手間がかかった次第です。
タグ:屋根曲げ
posted by よしひろ at 13:50| Comment(0) | TrackBack(0) | 蒸気機関車製作

2020年08月14日

C53ボイラー曲げ

C53のボイラーを曲げています。
珊瑚模型店や安達製作所といったメーカではどうやって曲げているのか知らないので、自己流でやっています。
曲げ前.jpg加工の際にエッチング板の表面が傷つくのを防ぐために薄いシートを貼っています。
曲げ1.jpg
3本ローラである程度丸めます。
この3本ローラは剛性不足のようで、中央部分が広がって均等には丸まりません。
その後、丸棒を使ってある程度均一に丸めています。
蒸気機関車の自作をされる方のblog等を見ると、両端を先に曲げるということが解説されていますが、後工程の都合で、両端は真っ直ぐのままです。
曲げ2.jpg
C53のボイラーは、火室の部分が少し上がっています。
それを表現するため、治具に入れて万力で押し出ししています。
高さの差は0.数mmなので、実際のところ見てもほとんど分かりません。定規を当てると何となくわかるレベルです。
油圧プレス等が欲しいところですが、現在は万力がプレス機代りです。
エキセンプレス(ネコプレス)はありますが、万力の方が強く締め付けられます。
曲げ3.jpg治具に入れて、ボイラーの両端を曲げる準備です。
曲げ4.jpg指、ハンマー等を使用して、曲げます。
曲げ5.jpg最後に、形を整えるために治具に入れて押さえつけています。
曲げ6.jpg
丸め終わった写真です。
スプリングバックで若干開きますが、これで曲げ作業は終わりです。
posted by よしひろ at 22:53| Comment(0) | TrackBack(0) | 蒸気機関車製作

2020年08月11日

C53運轉室の屋根曲げ

C53の運轉室の屋根を治具を使用して曲げています。
屋根曲げ.jpg
3本ローラで屋根上部を丸めます。
最終形状よりも小さめの径で曲げています。
 
ある程度曲がった板を治具を使い、最終形状に曲げます。
スプリングバックがありますので、治具から取り出した後に微調整します。
適当なプレス機がないので、万力で押さえつけています。
1/87の運轉室程度であれば、この程度のもので曲がります。
タグ:屋根曲げ
posted by よしひろ at 21:41| Comment(0) | TrackBack(0) | 蒸気機関車製作

2020年08月02日

駆動方式の検討

今回、1条ウォームで動輪からの回転ができるようにしましたが、先人が動輪からの回転が可能な方式を考えられ、その模倣と検討により実現できたと思います。
記録として、その経緯を時系列で示します。
※稲葉さんからご指摘の件、追記しました
内容発表先名前(敬称略)備考
1947 7私の電車鐵道模型趣味松田恒久1984年井上豊氏のオートクラッチの元ネタ。
 1978頃 クラッチギア未発表内田利次(クラーケン)
雑誌等には未発表。
福原金属さんの会(7月)にてお披露目。
韓国製コピー製品あり。
工業生産向きの構造で、確実に動作する。
 1984 11押して動くとれいん大東孝司3条ウォームにより、動輪側から回転可能
 1984 12オートクラッチ鉄道模型趣味井上豊自動式クラッチ
 1987 ベアリング入り輪軸未発表森井義博車軸にボールベアリング入り
 1989 コースティングギア商品発売スパイクモデル
2条ウォーム 13mmゲージ用
進み角21°19'(設計値)
 19942私のC51超特急とれいん森井義博
ウォームホイール内オートクラッチとベアリング入り輪軸。
クラッチは、Canon F-1の巻き上げレバーのクラッチ構造を参考に双方向にクラッチが効くようにして製作。
製作が非常に面倒なため、製作は1回のみ。
200g程度の車輛では輪軸にボールベアリングを入れたものよりも良く調整されたピボットの方が軽く回る。
クラッチ.jpgベアリング車輪.jpg
 1994 5C51
Super Superb Line
商品発売カツミ
2条コースティングギア内蔵
進み角約18°(実測)
動輪側から回転するが重かった。
 1999 6C622鉄道模型趣味森井義博ギアヘッド付モータと平ギア、スパイラルギアによる駆動。
動力装置の体積が大きいことと、スパイクモデルのコースティングギアと比べて動輪側からの回転は軽くなかった。
 2001 3条ウォーム 森井義博
2条でウォームを製作できる会社を見つけられず、3条で試作。特に問題なし。
2015 1条ウォーム(進み角20°) 森井義博
1条ウォームで動輪側から回転可能な歯車を作製。
歯底径は設計値0.17mmであるが、加工中に折れるため、0.77mmで製作。
ホイール歯の先端をウォーム歯底径が大きくなった分切削。
動輪側から回すと時々引っかかりあり。
2018 2条ウォーム(進み角30°) 森井義博
特に問題なし。
但し、無負荷回転数が12Vで4000〜5000rpmのコアレスモータが必要であるが適当なものが見つからない。
2019 1条ウォーム(進み角20°) 森井義博
1条ウォームで動輪側から回転可能な歯車を作製。
歯底径は設計値0.17mmであるが、加工中に折れるため、0.64mmで製作。
ホイールはウォーム歯底径が大きくなる分、歯を転位して外径を小さくした。
特に問題なし。
posted by よしひろ at 02:24| Comment(6) | TrackBack(0) | 蒸気機関車製作

2020年07月24日

鉄道模型実験室

鉄道模型実験室という本が出版されています。
鉄道模型実験室.jpgたまたま、この本の著者のサイトを訪れて、出版されていることを知り、購入しました。
内容的には、このサイトに記載されている事項をまとめたものですが、私の興味と一致するところが多くあります。
私の場合、気が向いたときにあり合わせのもので実験したりしていますが、この方は、本格的に測定器を作って実験し、検証されています。
この本の出版社が「工学社」というのも珍しいと思います。
「工学社」は、主にマイコン関係の書籍を出版している会社で、鉄道模型関連の出版はこの方の著書のみと思います。
実は、私が初めて雑誌に投稿し載せてもらったのは、「工学社」の「月刊I/O」という雑誌なのです。
本格的な記事ではなく、読者の欄のようなところに、ワンボードマイコンの改造記事が載りました。
本屋で立ち読みしていて、似たようなことを書く人がいると思ったら、自分の文章でした。
残念ながら、立ち読みだけで購入しなかったので、記念すべき私の投稿第一号の本は持っていません。
posted by よしひろ at 17:58| Comment(0) | TrackBack(0) | その他

ロストワックスの収縮

C53の連結棒(サイドロッド)をロストワックスで作っているのですが、なかなか希望した寸法にできませんでした。
連結棒.jpgロストワックス鋳造したものは、原型よりも収縮しますが必ず均一とは限りません。
連結棒のクランクピンの穴は、精度が必要なため、後で機械加工する必要があります。
でも、ロッドの丸いところとクランクピンの穴はあまりずれると見た目が悪くなります。
ロストワックスの収縮率は3〜4%程度と思われますが、実際に作ってみないと正確なところは分かりません。
最初は、6年ほど前にうまくいったものを再生産してもらったのですが、出来上がったものは、小さくなっていました。
ゴム型が年月を経て収縮していたようです。
そこで、穴の位置を合わせるために、今回は原型を4個作りました。
原型は3D造形で作っているのですが、そもそも3D造形で出来上がってくるものはデータ通りの寸法ではなく、ある程度の誤差があります。
3Dのデータを0.5%ずつ変化させて、少しずつ寸法の異なる原型を作製し、現在のロストワックス鋳造での収縮率の推定値から適当と思われる寸法の原型を選択してロストワックス鋳造するという手法です。
実際のところ、3D造形で出来上がったものは、0.5%の差も無く、ほぼ同じ寸法というのもありました。
写真の中央部のものがほぼ期待した寸法のものです。
右側は、原型違いで短かったものです。
左側は、中央のと同じロットですが、ロストワックス鋳造時のばらつきで長くなったものです。
posted by よしひろ at 17:23| Comment(4) | TrackBack(0) | 蒸気機関車製作

2020年07月06日

#00ねじ

今回のC53では1.0mmよりも小さいねじを使います。
このねじの十字穴は#00とされているのですが、普通に市販されている#00のドライバでは入りません。
そこで確認してみました。
ドライバ.jpg左上がねじの頭です。
ドライバは左から、
・日発精密工業 #00 十字用ビット DBPH169(メーカ推奨品)
・ベッセル TD-51 +0000
・エンジニア DM-21 +0000
・アネックス精密ドライバー +000 No.65
・ジャパンホビーツール プラス#00 外径1.5ミリ
・PBスイスツールズ PH00(Phillips#00)
です。
日発精密工業(NHK)のは無論問題なく使えます。
ベッセルのは問題なく使えそうです。
エンジニアのも使えますが先が短いのが気になります。
アネックスのは先の凸部がちょっと太いのですが一応使えそうです。
JHTのは先の凸部がちょっと太くて微妙です。
PBのは全く使えません。
ということで、#0000と書かれたものなら使えそうです。

ところで、ドライバを調べていて初めて知ったのですが、ねじの十字穴は、Phillips規格だと思っていたのですが、JIS規格(日本工業規格)というのも別にあるようです。
日本製のねじの場合JIS規格で作られていることが多く、PhillipsドライバではなくJISドライバを使用すべきのようです。
海外のねじの場合は、JISかPhillipsか確認してから使う方が良いと思います。
日本国内では、十字のドライバがJISかPhillipsか明確に示されていないことが多いと思いますが、日本企業製の日本向けはJISのように思えます。
海外では、明確にPhillipsとJISで区分して販売しているところもあるようです。
PhillipsとJISの違いはよく知らないのですが、十字の凹部の底が広いのがPhillips、狭いのがJISのようです。
タグ:phillips ねじ JIS
posted by よしひろ at 00:08| Comment(0) | TrackBack(0) | 部品

2020年06月20日

釣リンク

返クランク腕と心向棒を繋ぐ釣リンクの形状が左右非対称であることを今までは気にしていませんでした。
小さな模型の部品としては対称形で作られていることが多いと思います。
釣リンクの下側には斜めにボルトが付けられていてそれがどちらを向くのが正しいのか確認しました。
釣リンク.png
C53の弁装置組立図面を見るとボルトは前側になっています。
図面では、9の部品です。
京都鉄道博物館で実機を確認すると、
C53釣リンク.jpg写真では見づらいですが、確かに前側にボルトが付いています。
C51釣リンク.jpg
ところがC51では後側にボルトが付いています。
京都鉄道博物館で見ることができた蒸気機関車では、C5345とC621以外は後側にボルトが付いていました。
C6226は後ろ側にボルトが付いていてC621吐逆なのがよく分かりません。
C622は整備中だったので近づいて見ることができませんでした。
ということでC53の釣リンクの向きは他の機関車とは逆ということが確認できました。
C53の場合、連結棒(サイドロッド)も関節の位置が通常とは前後逆なのですが、何故でしょうね。
タグ:機関車部品
posted by よしひろ at 13:33| Comment(0) | TrackBack(0) | 蒸気機関車製作