機関車の牽引力とか付随車の負荷を測る測定器です。
2020年12月19日
2020年12月17日
2020年12月14日
ピボット軸受のテスト
燐青銅板にプレスで作ったピボット軸受の台車を組み立てたら、輪軸が割と軽く回ったので、どれくらい回り続けることができるのかテストしてみました。
初速度にもよりますが、40〜50秒程度回り続けることができるようです。
2020年12月12日
耐久試験3
試験で動輪の回転時間が100時間に達したので、試験終了とし、ウォームギアの様子を確認しました。
就寝中、外出中は安全のため試験を停止したため、総時間159時間中、稼働時間100時間に対し、59時間は停止していました。
動輪の回転速度は、約355rpm(実物換算速度で約117km/h)でした。
タグ:歯車 ギア 伝動
2020年12月06日
びっくりマシン3
びっくりマシンをフルグレックス製やレマコ製のポイントマシンの置き換えができるように回路を組んでみました。
手抜きで、回路図は作らず、立体配線です。
3Vのモータを12Vで動かすために、起動電流の制限抵抗を入れました。
モータの巻き線抵抗は10Ω弱(個体差が結構ある)ですので、起動時の電圧を4/1にするためには合計40Ωになれば良いことになります。
ということで、30Ωの抵抗を直列に入れています。
起動時は電圧が1/4(12V入力で3V)になりますが、動き出すと電流が減るため、もっと高い電圧がモータにかかります。
3V印加時よりも速く回りますが、モータを流れる電流は少ないので、焼けることはないはずです。
ダイオード4個でスイッチに合わせてモータには同極性の電圧がかかるようにしています。
タグ:ポイントマシン
2020年12月05日
負荷試験で分かったこと
負荷試験は、レール、車輪の摩耗のため中止しましたが、この試験で分かったことを書いててみます。
(1)駆動系の伝達効率
非常にざっくりですが、この駆動系の伝達効率を計算してみます。
非常にざっくりですが、この駆動系の伝達効率を計算してみます。
注油後の入力電流は、約0.09Aでした。
動輪上重量は約500gで、過去のデータから動輪の摩擦係数を0.2とすると約100gfの牽引力があります。
動輪直径は20mmですので、動輪の軸に約100gf-cmのトルクがかかっています。
一方使用しているモータは、トルク/電流比で11nNm/A≓110gf-cm/Aです(メーカ公称値)。
なので、モータの出力トルクは、110×0.09=9.9gf-cmとなります。
ギア比は1:23なので、ウォームホイールには約230gf-cmのトルクで回していることになります。
実際には100gf-cmしか出ていませんので100/230=0.43です。
つまり、約40%の効率と計算されます。(あまり正確な計測ではないため、有効数字を少なくしています)
(2)牽引力
上記の通り、注油後の入力電流は約0.09Aでしたが、試験が進につれ、0.22A程度まで増えました。
電流が増えた要因ですが、
- 駆動系の負荷が増えた。
- 動輪とレールの摩耗で動輪ーレール間の摩擦が増えた。
前者は、通常は回し続けることでスムーズに動くようになることが多いと思います。
なので、後者の要因が大きいのではないかと思います。
とすれば、牽引力が2倍以上に増えていることになります。
牽引力を増やすには、動輪上重量を増やすしかないと思っていましたが、もし、適切な踏面形状にすれば牽引力が上がるのならば、検討する余地がありそうです。
タグ:歯車 ギア 伝動
ウォームの耐久試験
先日発売のC53でウォームギアが摩耗したという話を聞きましたので、確認の試験をしています。
機関車を固定し、10Vを印加して動輪をスリップした状態で回し続けます。
1時間経過し、ウォームギアの様子を見ましたが特に問題はないようでしたので、注油してから試験を再開しています。
レールと動輪のタイヤはスリップによりすり減っています。
2020年12月01日
びっくりマシン2
びっくりマシン据置Ver.を組み立ててみました。
タグ:ポイントマシン